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0. The purpose of this paper is to briefly report on some
Vel \) f/
Y -

new advances due to W:D. Brownawell ${12] on the problem of expli-

cit (concretely computable) solutions to the Bezout equations, ¢

whicﬁ are based on some recent developments in complex analysis
VRS B . L
due to AT Yger and the authors,[6]. [9). B ‘ ' .

;e

Let P ..,Pm € C[zl,...,z = €{z] be polynomials with

Lo .

degrees deg(Pj); i the Pj's have no common zeros i1 €7,

then the well known Hilbert's Nullstellensatz shows that the so

called Bezout equation

(0.1) P1Q1 + ... PQO =1
has a solution Q = (Ql,...,Qm) with Q, = €[z].
o
If n=1 (i.e., only one complex variable is involved), the

solution Q@ can be explicitly obtained with the use of the
euclidean algorithm; even for n > 1, the existence of Q dces
not require the full use of the Nullstellensatz, as it can be
derived (not explicitly though) by elimination theory {13]: this
approach, also, enables one to deduce an upper bound on the
degrees of the Qj's in terms of the Pj's which, however, is
gquite high for all "practical purposes."

The reason for mentioning "practical purposes" need not be
explained in detail in this volume, and we will be satisfied with
two rather well known examples. The first one arises in the study
of the problem of stabilizability of a strictly causal MIMO (mul-
tiple input-multiple output) system, in which case, as it is

shown, e.g., in [15], one is directly lead to the study of a

matrix version of (0.1) {(in the case of single input and output, |

j
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¢ the scalar version (0.1) suffices). More generally, many problems
N connected with the stabjliza{ion of MIMO weakly causal systems

N lead to similar considerations; we refer the reader to [11) for

K more details on this and related subjects. We would only like <o
K recall here that the matrix valued Bezout equation can “e reduced
X to solving a single equation of the type (0,1) ({(cf. [6]).

'

) A different applied area in which the Bezout equation (0.1}

8 arises quite naturally is connected with the manv probl:ms from

K the (increasingly important) field of "imaée reconstruc zion” (i.r.
o in the sequel) technigues. As this was the origin of our first

interest in the subject. let us briefly summarize how i.r. can be

g linked to Bezout equations. A naive approach to the i.g. problem
ﬁ could consist in using a single sensing device (a lens vhich dif-
w fracts the signal to determine or anything else which transforms
4 in an "explicit" way the image we wish to determine), which is

iy usually mathematically modeled as a convolutor related to a com-

8 pactly supported distribution (this modeling, of course, depends
g on some specific physical assumptions we ask about the sensing

','

¢u device, like its time-invariancy, its causality, etc.). 1In other
‘.l

‘ words, if f is the unknown signal (e.g., represented by a dis-
? tribution), and if g is the distribution describing the trans-
o

£ formed signal (the one we receive), it is (up to noise)

n

X {0.2) g = urf

¥

ﬁ with M4 some compactly supported distribution, i.e., if f., g

and u are Ccp functions, u with compact support

¢ (0.3) gix) = | fix-tyu(t)dr,
;:' H R n
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R being the euclidean space (of suitable dimension) in which our
physical problem takes place.

The qguestion, however, of recovering the unknown f from g
is easily seen to be (generally speaking) an ill-posed problem
(see, e.g., sec. 1 of [4]), so that the i.r. problem naturally
leads to a multiple-sensor approach. From a physical point of
view this simply means that we try to reconstruct the signal from
the action on it of several (suitably related, in a serse which is
precise and which we will explain in a while) sensors; from a
mathematical point of view, on the other hand, we can yrovide the
following model: we will assume the unknown signal to be repre-
sented by f € G(Rn) (€ will denote the space of Cm functions,
with the usual topology of uniform convergence on compact subsets:
topology plays a quite relevant role in this problem!), and we
will represent our sensing devices with compactly supported dis-
tributions Mgoooo My = 8’(&?), which produce the received
signals g, = nl*f,...,gm = pm*f. Clearly, the i.r. problem will

be well posed (and solvable) only when the map

(0.4) f~4(g1,...,gm)

from & to Bm has a continuous inverse (which can be explicitly
produced). The link between the i.r. problem and the Bezout equa-

tion is now given by the following well known result [17], [18].

Theorem 0.1. The map (0.4) has a continuous inverse iff the

Fourier transform &j of the distributions uj (the ﬁj are

entire functions on €" of exponential type and of pulynomial

growth on Rn c Cn) satisfy the following condition: 3 A > O
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such that

(0.5)  lmy(z)i+ ... +la_(2)i 2 A(1+izi)" exp(AlIn zi), ¥V z « €™

" condition (0.5), in turn, is equivalent to the existence of dis-

tributions v R &%Rn) such that

, m
\ * % =
B (0.6 PR N SRR ‘N Vi b
<,
Y (o the Dirac delta) or (equivalently) to the existence of
¥ -
" Q. -eeiQ < (t'(*™))  such that
a" e - _
& (0.7) ul Q1 + ... + "m Qm = 1.
3
3¢
* In this case the i.r. problem is solved with the construction
. of the inverse of (0.4), i.e., by
0
M
R = * *
R (0.8) (gl,...,gm)—qf vVi*g, o+ . F Ve -
.
it Thus, at least in the case in which the sensors have punctual
» supports, the solution to the Bezout equation immediately provides
%ﬂ the solution to a particular i.r. problem.
R
Notice that condition (0.5) can be, quite often, translated
% into physical conditions on the sensing devices; consider, for
¥
2.8
o example, the case n =m = 2, e.g., two sensing devices in the
Y
Li
? plane, which were taken to be the diffraction in two circular
“ lenses of radiuses R1 and R2 (the details are discussed in
ﬁ {(8]): in this case it can be shown that, in order for (0.5) to
Q hold, it is sufficient the existence of a positive constant C
E such that
‘\' |R1 p! N c
‘ o - - ’
" \RZ q 'q!2
X where p.d(=0) describe the set of zeros of the first Bessel
't
L]
)
I
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+ 3
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function J1 (which in this problem arises as a part of the

uj's).

These motivations are probably sufficient to justify the
great interest which, in these last few years, has developed
around the construction of explicit solutions to (0.1). Note
however, that in this paper we are concerned with a ver; simple
Bezout equation, in which only polynomials are concernel, so that,
in this case, Theorem 0.1 is essentially superfluous, a; (0.5)
reduces to the condition that the Pj's have no common zeros, and
so it does not yield any more information than the Nullstellensatz.

Still, Theorem 0.1 is worth looking at, since it cin be used
towards the goal of explicitly constructing the Qj's. Indeed,
Theorem 0.1 (an important breakthrough in complex analysis, at the
time, due to the power of the new tool of the L2—estimates for
the o-operator) is only an existence theorem which provides no
clues with regard to the construction of the v, 's (or, egquiva-

b

lently, to the construction of the Qj’s), as it is based on the
purely existential technigques of Lz-estimates; in Hormander's
arguments, the Q,'s are "constructed" in a guite natural way:

J

one first constructs a d”

-solution to (0.7), which is then "cor-
rected" into a holomorphic one, with growth control, via the
existence of solutions to the inhomogeneous Cauchy-~-Riemann
equation du = £ (for £ a 8-closed (0,1)-form). In view of
this procedure, the work of M. Andersson and B. Berndtsson (1] on
explicit solutions to the inhomogeneous Canchy-Riemann equations

becomes immediately of crucial interest, even though their formu-

las do not satisfy the necessary stability requirements, at least




+
¢
W,
)
in the most general case (we should mentior. that a 2:iffarent y
» \4
approach to the representaticn formulas of [:], which arcide the 4
use of the -technigues., has been recently established by M. A
Andersson and M. Passare [(2]). €Still, these formulas wark fairiy s
well in the case of (0.1), i.e., in the case cof the pols/nomial
Bezout equation (of which (0.7) is the entire holomorphic versizn), -
and in a series of papers by B.A. Taylor, A. Yger and tie auvthors S,
(6], [8], [9])], special versions and modifications of it have been -
applied towards an explicit solution of (0.1) and (0.7): :in :f
section 1 we will briefly outline these results. :A
As a consequence of these (long) considerations, i: has h
probably become ciear the necessity of providing goond biunds for b,
..
the degrees of the Qj's in {C¢,1); this, of course. is necessary u
1
to even consider the possibility of implementing a symbolic calcu- W
lation which would effectively produce the Q. 's. .
/ r
Some algebraic approaches to this questicn, when (0.1) is ’ ?'
.
replaced by the meore general {
0.9 . =c cece'z],
{ ) P1Q1 PQO = -
but with strong hypotheses on the P.'s have heen given ir (3] o
[14]), while, on the other hand. if the P.'s have no common zZeros )
o
at infinity either (think of the Pj's as homogeneous pclynomials o4
Y
in :%y, basic results cf eliminaticn theary 1191 show *that the -3
. ™
QJ's can be chosen with ;
‘I
degiQ.! $ n(D-1) =+ i .
b '
Y Al
D = max(degi(p,).). 3
i * '
Until the rerent results o Brownawell, the best one ~culd dc
*
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in the general case was to employ the classical methods of Hermann
{16], and, in particular, D.W. Masser and G. Wusthol:c (20] proved

that one can solve (0.1) with

n-1

deg(0y) 3 2(2D)2

which, of course, is & terrible bound, being a double exponential.
Recently, however, Brownawell exploited the explicit solu-
tions to (0.1) described before, to drastically reduce this bound,

as the following theorem [12] shows:

Theorem 0.2. Let PI""'Pm € €{z] have no common zeros, and let
D = max(deg(Pi)). Ther. (0.1, can be solved with Qj's such that
i

deg(Pij) 4 3unDu,

for 4 = min(m,n).
The purpose of section 2 of this paper will be to outline

this result.

Acknowledgements. The authors are indebted to W.D. Brownawell for

discussing with them Liis paper [12].
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1. 1In this section we describe our explicit integral formula
(formula (2.11) in [6]) which constitutes the analytic part in
Brownawell's argument; actually, this formula is just an explicis
translation of Andersson-Berndtsson's formulas, in the case of
polynomials, in which case the original kernels become gJuite
manageable. In order tc give the flavor of its constru:ztion, let

us briefly sketch what happens in the simple case of on: variable,

but for entire functions with growth restrictions: tak2, e.g.,

Fl,Fﬂ > {&'(RY) ., which satisfy (0.5), and let us try to construct
r4

Gl,G2 i (T(R)) such that

(1.1} Fl-G1 + F2-62 = 1.

It is well known (7], that, by (C.%)., one can interpola:e the

values of 1/F, on {z <« € : F_ (z) = 0} with a function H, € &’

2

and the values of 1/F2 on {z € ¢ Fl(z ="0) with H2 3

Then the pair (Hl,Hh) might well be a candidate for a solution

of (1.1), and one coculd "reasonably"” think tc express H,,H via

’
1772

a "basis" of functions cf the like
§-2F, (8} (f-a)F, (a),

where a is a simple ~ero of Fz.
This idea, however, does meet (generally speaking) with some

difficulties, which make necessary the introduction ‘see [9],

section 2) of some extra conditions on (FI'F2) which, however,

are always satisfied in the polynomial case. Without dwelling in

these details we simply state the following result [9]:

Theorem 1.1. Let FI'F? satisfy (0.5) and suppose that their

zeros are simple and lie in the region

9
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{z : 'Im 2zl - C log(2 + IRe zi1)}.

Then there exists g = '~ such that the series
1 F2(z) )
G,(2) = Z q = e
F2(5)=O 8 FI(B)FZ (8)
F.l{2z)
1 1!
G,(z) = . .,z e ¢ ¢
2° 7 q . (z~a)
’ F,()=0 a’F,(a)F, " (a)
are normally convergent in &'(R), then, on ¢,
1= 2% (2)6,(z) + 2P, (2)6,(2z) + F (2)F (2)P(z)
& 2 'S <
X with
I -1 -2 -1
P(z} = ResiZ__* g7 + g3
§=ci vIF L GIF,(4) |

Sketch of the proof. The proof of this result is essentially

based on a suitable application of the Cauchy formula to the
function w({) = {qFl( )F2(§), where g has to be chcsen large
enough (in a sense that will become clear in the sequel). Indeed,
one needs to find a sequence of real numbers rn/'+m, and a
sequence of Jordan curves rn c T . together with positive con-

n+1l

stants A.M > 0, such that

F1g) ~ r, ~on rn, length(rn) = O(rn),

(1.2)

{lt”sl(z)x 2 A(1+1§1) on I _.

{Notice that, for polynomials, condition (1.2) can be easily

satisfied). If then Dr is the bounded open set whose boundary
I3

is Tj, the Caucy formula gives, for =z € Dn and g = M.

'y

: . . “ P At A R T AT e A e e P g At T o P T T LV AL A
’“‘!'a"':‘“\ "a...‘q ¥t ~‘- " . h b c o ‘.r.' . " ," { J “¢-'.'" w -"JI.'." i \J ' (’__-.J‘.--/‘_'J' A .-"- .f v - l-



G AR ek N s P ta v eb R cabierl ko SR Erg caf Bat bk Sak -ttt Lol A bt ath gt g b gt PR ha™hah tath st ate gt oW St o' rd o' o't oot o

a

N (1.3) L wEewid) o w(z) 44
¥ a 2mi w({)(z-§) ~ 2x i w(g)(z-§)"

¥ r I_
n bo!

Ny

% from which one then gets the above result.

N

& If we now want to extend Theorem 1.1 to the case of n > ..
& (for n=1 and m > 2. no real difficulties arise, s:e [(3]), we
W

N have to substitute, in (1.2), the Cauchy integral formula with the
o
U
ﬁq so called Koppelmann formula [10]; this result states tiat. for a
) . 1

3 bounded domain [ ¢ €%, with C boundary, there are zernels ¥
o and P such that for any ue Cl(ﬁ), the fcllowing resresenta-
A

l'
, tion holds for = e D,

1 Ty v

; u(z) = —2— ‘ W(EIK(z.85) - | Julg) A K(z.8)

- n'(2mri)” , J

j JdD D

* (4.10) { 1
[ =
= - | u(()P(ZfC)Jv
-
i o
s where K and P are differential forms in § of type. respec-
!}
)

&' tively, (n,n-1) and (n,n), and their concrete construction is
{‘ given in [10]. Instead of describing the general case, which is
)
.: rather complicated, as well as beyond our immediate interests., we
[N
e will confine ourselves to the explicit description of the situa-
., tion for the case of the polynomial Bezout equation.

f} Our notations will be those from complex differential

Y
,J calculus, which can be found in [24]. From this point of view, a
e function ¢ on Cn will be regarded as a function in the 2n

e variables (‘....,Kn, f"""fn' whose complex differentials are
. 4 4

Y

i defined by
e

S

€

l

s' 11

)
W
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n n
N a¢ - z a vy
e a = o] a = ——— d ’
'4 af? 4 4 oF ;j

g i= - 3=1"1%J

. a o : . . ¢
4 or % o the usual operators. If w is a (1,0)-type dif-
: 39
B N
[}
0 ferential form, i.e., w = :E:wjdcj, one defines
A j=1 ¢
iy n
: w8
) ow = W, ag .
T 3 N %
L =1
- and
¥
R 1
p W= w . w (1 times).
»
e If now Pl""'Pm are polynomials in €(z] with no conmon zeros,
A it is well known that there exist ¢,C > 0, such that, on c”
: -L
" (1.5) iP.(z)i + ... + [P (2} 2 (1 + (zi) —;
’: 1 m
) the value of L, which classically [23] is known to be estimated
‘Y]
g a priori in terms of the degrees of the Pj’s is crucial to what
by follows, and we will return to it later on.
g .
, We now associate to each Pj a differential form g(J) in
]
E the variables z,....,;n and parameters PR by
; n

st g2y = Zg‘((j)(z,zmt;k.

s k=1
\ where
K 1
p (3) 9%, 4
iy (1.6) 9y (g.2) = | azz(ll + t(zl—Cl), cee Kn + t(zn-Cn)) t.
1 C

Thus, the g(j) are differential forms whose coefficients are

polynomials in 2n variables which (1.6) provides in an explicit

fashion. (We remark that since the Pj are polynomials, these

)
3
L
¢
RJ
4
)
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:ﬁ integrals can be computed explicitly. We just leave them in this

" form to simplify the notation.) &as the P,'s have no common

o

zeros, we can define one more differential form

| n

3“‘ N )

& . = ]

g} Q=0k.f.2) = [:E:Pj(z>g{3’(:.z>;/up(c)u2,

d“ j: 1 -

Y]

4y n

¥, O ~

;ﬁ where, as customary, (P(&)I* = }EIF}(:)Iz. We are no~ going to
o j=1

write an integral formula in which a sufficiently high =xponent N

%& must be chosen, in order to ensure the convergence of the inte-
A
"h' grals (as in Theorem 1.1); as it will appear in a seconi, the
LYy
- value of N depends explicitly on the value of the constant L
t‘&
ﬁ which appears in (1.5), and can thus be estimated in terms of the
)
!
fb' degrees of the PJ',s: a relevant part of Brownawell's work con-
o sisted in improving as much as possible this estimate.
§$ m n
W' - -
::z: Let then P(f)'-P(z) = ij(z,‘)~Pj(z), {-z = ch-zj and,
2 j=1 j=1
) for s = min(m,n+l1), set
v
A
o - _(n=1)! ~~s! | N! - _
" Cx k!'(n-k)! (s-k)! (N-n+k)!’ k=0,...,81.
v'.'
With all these notations set, we can finally write the Bezout
D
L]
gﬁ equation (0.1},
;%v s-1
- — - N-n+k -k
) ce ] S [z TN (FTET-R())®
o micar)™ 1on = Nlagn? . '!P(t)!'2 g
W €’ k=0 m ' ‘
:n& (1.7)
o . (38 1og(1+141%)) P K A )X,
A with integration with respect to the variables ¢ and {.
b‘
\‘3
“i" 13
£\
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Even though (1.7) might not resemble (0.1) at first sight, it

takes only a moment to realize that each Q; in (0.1) can be found
o

¢
in (1.7) by simply collecting the terms in which Pj appears:
‘% this provides, henceforth, an explicit solution to (0.1) which,
N )
)
[
" from a concrete point of view, is now reduced to the computation
‘:! <
_ of a finite number of definite integrals over €®. A ‘ew comments
W
'n are in order on the practicality of this approach and on its
U
I|.
:r stability: first one realizes that the computation of the inte-
t‘. -
grals arising in (1.7) can be executed rather efficien:ly since
LU
5'!
ﬁ, the choice of N itself assures that the integrands decay rather
W _
y guickly as functions on !§!, and, more importantly, vie have ex-
N
plicit estimates on this decay, which can enable us to control the
(Al
X
:‘ errors; as for a more detailed consideration on the stzbility and
A
0
§Y4
f$ the applicability of this kind of algorithm, we refer the reader
e, _
B to (4] and (5], where several concrete examples are discussed.
W
-
3
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' R
Wy
iy
%
N
i)
0
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:'I
.
)
u:‘
g
"
N
ki
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e
W
»
N 14
‘, .
l‘.
L
‘i
-
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2. This last section is devoted to the brilliant result of
Brownawell whe, via the formula (1.7). and with & careful exploi-
tation of elimination technigues in the theory of transcendental
numbers (mainly based on the work of VYu.V. Nesterenko, [22]. and
its references) succeeded in proving Theorem 0.2Z.

This theorem, actually, turns out to be a ccrollary of the
proof of a more refined statement for which we will corcentrate in
the sequel.

Let us recall a definition from commutative algebra, [21]:

we say that Pl""’Pm e €{z) form a regular sequence if Pl = 0
and, for 1 = 2,...,m, Pi is not a zero divisor in €[z},
(Pyo.oWP) where (P Pey) denotes the ideal cenerated by
Pov....P;_, in €(z]. The theorem we mentioned before is:
Theorem 2.1. Let P:"“’Pm e ¢(z] form a regular sequence and
let Di = deg(Pi) > 0. If the Pj's have no common zeros then
there exist Ql""’Qm in €[z] such that

PlQl + ... 4+ PQO -1 on "

and

deg(PiQi) ZﬂnDi-...'Dﬂ + 3mD

with M = min{m,n}, D = max(Di).

-

The key step in the proof of Theorem 2.1 is an interesting

result on a lower bound on the maximum modulus of a regular

sequence with no common zeros, namely:

Theorem 2.2. If P .P_€ €(z] is a regular sequence with no

NCEIEEER

common zeros and deg(F,) = Di >0, 1i=1,...,m, then there

exists a constant C > C. depending only on P ..,Pm such that

1"
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D for all ¥ € € - (0), with (¢| = max([{ 1} » 2, it is

maxi{P (Y] 2 Cl{] ¥ ¢
L

had

e e

for u = min(m,n).
We do not wish to spend any time on the complicated proof of

Theorem 2.2 (whicli, in Brownawell's pape:, relies on Na2sterenko's

X

use of the Chow form of homogeneous ideals in .[(z]), for which

" -

-~
Y-

we refer the reader to [12]:; on the other hand, we wisa1 to show

. -
o™ %o,

how the algebraic result given in Theorem 2.2 can be used to prove

o,

Theorem 2.1 and how this theorem, in turn, can be used to obtain

PR N X

the bounds of Theorem 0.2. Henceforth, throughout the sequel, we

will assume Theorem 2.2.

PR R T Bl

Proof of Theorem 2.1. In this proof, we have to explicitly refer
to the constructicns of (1.6} and (1.7). Indeed, by construction
iy
. (3
! degt(gﬁ ) < Dj - 1.

so that, if we write

LR Y]

M

0
()Q = Z aij(clfrz)d(i ~ dEj'
i,3j=1

> o

n :
) we have, for =z € € fixed, and as ||§||—+®,

2B+2(D-1
’ maxlai;(t,f,z)l = oLl ( hy,
o
1
)
where, again., D = max(D,), and B =1 - (u—l)D,-...‘Dﬂ. In a
i * *
similar way, if we write
‘ n
0 =2, 2. . Z -
i, j=1
k}
1€
QU M M T SN N 'f‘ho. 4|' '
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o we have, for If -+,
¢ maxiby (€ )i = otgn™?).

" Hence, Theorem 2.2 shows that the convergence in the integrals cf

S (1.7) is guaranteed if, for each k = 0,...,m-1 (notice that the
"l s
regularity hypothesis on P,,...,Pm implies m £ n+l1, hence s =
W -
3 min(m,n+1) = m), it is
3,
5
m N-n+k> (mk)B - 2(n-k) + 2k(B+D-1} + 2n.
i i.e. R )
N
. (2.1) N > (m+k)B + 2kD + n - k.
. |
ﬂ The worst case of (2.1) occurs for Kk = m-1, i.e., the conver-~

gence of the integrals in (1.7) is implied by

N=(2m-1)B + 2(m-1})D + n - m + 2.

) ]
Now, the coefficients of 5Q have degree, in 2z, less than or
Y
} equal to D - 1, so that. from Thecorem 2.2, we immediately get
)
W
ﬁ that the degree of P,Q, is bounded, for every i, by
. i
1.
A (2.2) N -n+ mD = (2m-1)(n—1)D1-...-DN + (3m-2)D - Zm + 3.
Q Theorem 2.1 now follows immediately: indeed, if y = m this is
¢ obvious, while if 4y =n, m =n + 1, so that (2m-1})(n-1) =
N 2un - n - 1 which concludes the proof. .
)
Y We now sketch how Theorem 0.2 is actually a consequence of
M
f the proof of Theorem 2.2 and, more precisely, of (2.2).
n
o Proof of Theorem 0.2. The idea of the proof [12] is, reasocnably
"
ﬁ enough, only algebraic, as it essentially tends to show that,
S
5 starting with the Pj's, one can (if the theorem does not hold
%
of 17
;"
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immediately) produce a regular sequence (Q ,Q.), with no

e m

common zZeros, where each Qj is a C-linear combination of the
Pj‘s; (2.2) then gives the thesis. To be more precise, let ¢
i=1,...,t = min(m,n+1); the induction hypothesis is that either

Theorem 0.2 holds true. or else there are polynomials ( 0

1o 9y
.. P and which &
m

which are linear combinations (over &) of Pl"'

form a regular sequence. For i =1, just take Q, tc¢ be any

-

non-zeroc P,. Suppose we have now constructed such a sequence
o

0 "Qi for i < vp. If the Qj's have no common zeicos, the

17"

induction step follows from (2.2) in an obvious way. Ii the
Qj's, on the other hand, have common zeros, it is a co1seguence

of Lemma 1 of [{20] the existence of again a linear combi-

Qs

nation of P ..,.P_, such that Ql""’Q

I m is still regular.

i+}
The conclusion is now a simple matter of applying (2.2).

We now wish to conclude with a remark on the concrete possi-
bilities that formula (2.2) has to be applied, in view alsc of
Theorem 0.2. Indeed, at least in the case of polynomial Bezoux
eguations, our methods have an important "opponent" in the alge-
braic method which is dne essentially to B. Buchberger (1965), and
which relies on the so called Grobner bases. It would take us too
far afield to describe this method (for which we can refer the
reader to the excellent survey given by Buchberger himself in
[13]), but a couple of words may help to understand the different
nature of this elegant method. Let F be a finite set of polyno-

n .

mials in the so called "simplification problem mcdulo the

ideal generated by F°, i.e., the problem of finding unigque repre-

sentatives in the residue classes modulo the ideal generated by

18
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